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and corrected carotid flow time with invasive 
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Abstract 

Background:  Non-invasive measures that can accurately estimate cardiac output may help identify volume-
responsive patients. This study seeks to compare two non-invasive measures (corrected carotid flow time and carotid 
blood flow) and their correlations with invasive reference measurements of cardiac output. Consenting adult patients 
(n = 51) at Massachusetts General Hospital cardiac catheterization laboratory undergoing right heart catheterization 
between February and April 2016 were included. Carotid ultrasound images were obtained concurrently with cardiac 
output measurements, obtained by the thermodilution method in the absence of severe tricuspid regurgitation 
and by the Fick oxygen method otherwise. Corrected carotid flow time was calculated as systole time/√cycle time. 
Carotid blood flow was calculated as π × (carotid diameter)2/4 × velocity time integral × heart rate. Measurements 
were obtained using a single carotid waveform and an average of three carotid waveforms for both measures.

Results:  Single waveform measurements of corrected flow time did not correlate with cardiac output (ρ = 0.25, 95% 
CI −0.03 to 0.49, p = 0.08), but an average of three waveforms correlated significantly, although weakly (ρ = 0.29, 95% 
CI 0.02–0.53, p = 0.046). Carotid blood flow measurements correlated moderately with cardiac output regardless of 
if single waveform or an average of three waveforms were used: ρ = 0.44, 95% CI 0.18–0.63, p = 0.004, and ρ = 0.41, 
95% CI 0.16–0.62, p = 0.004, respectively.

Conclusions:  Carotid blood flow may be a better marker of cardiac output and less subject to measurements issues 
than corrected carotid flow time.
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Background
To be able to identify patients who are fluid responsive is 
important in the management of those who are acutely ill. 
At present, there is no non-invasive method that can reli-
ably and accurately identify fluid responsiveness. As such, 
in patients with undifferentiated shock, treatment often 
involves empiric fluid administration, in the hopes that vol-
ume expansion will increase preload, which will then serve 
to increase cardiac output (CO). However, for patients 
on the flat portion of the Starling curve, aggressive fluid 

administration results in no appreciable increase in CO 
and may be detrimental [1–3]. Thus, the ability to identify 
where each patient is on his/her Starling curve can help 
identify patients who would benefit from additional fluid 
(fluid responsive) and those who would not (fluid unre-
sponsive). Unfortunately, traditional measures of preload 
such as central venous pressure have not consistently been 
shown to be helpful in identifying volume responsiveness 
[4, 5]. The use of pulse pressure variation shows promise in 
ventilated patients, but requires the insertion of an arterial 
line [5]. As such, there remains a pressing need to be able to 
identify fluid responsiveness non-invasively at the bedside.

Fluid responsiveness is typically defined as an increase 
in CO by 10–15% in response to fluid administration [6]. 
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To avoid excess fluid administration, an increase of CO in 
response to maneuvers such as the passive leg raise (PLR) 
is considered indicative of fluid responsiveness [7]. PLR is 
typically performed with the patient either in the supine 
or semirecumbent position, followed by repeat measure-
ments with the patient’s legs passively raised at 30–45° [7]. 
This maneuver is considered to result in an auto-bolus of 
fluid of approximately 300 mL in volume [8]. The benefit of 
the PLR is that its hemodynamic effects are rapidly revers-
ible, since no fluid administration actually takes place.

Cardiac output, however, has been challenging to meas-
ure at the bedside. The traditional reference standard for 
measuring CO requires the insertion of a pulmonary 
artery catheter [5, 9] which is invasive, associated with a 
risk for serious complications [10], and its use may offer 
no clinical benefits [11–15]. Newer non-invasive devices 
using bioreactance parameters have mixed evidence in 
their accuracy and reliability [16–20], and require a dedi-
cated machine that may not be readily available. Lastly, 
estimations of CO using echocardiography have been 
suggested as a bedside measure. However, its use may not 
be feasible due to high training requirements [21].

In the quest to identify feasible, non-invasive, and repro-
ducible bedside estimates of CO, carotid Doppler imaging 
shows promise. In particular, two carotid measurements 
have emerged as candidate markers of CO: corrected 
carotid flow time (CFT) and carotid blood flow (CBF). 
CFT is the carotid systole time, with heart rate correction 
applied. This measure is easy to perform and may corre-
late with intravascular volume [22]. CBF is the integral of 
blood volume that is ejected through the carotid artery 
with each cardiac cycle. This measure has been shown to 
be feasible to perform at the bedside [23, 24].

Studies to date have shown that corrected CFT 
increases in response to fluid administration or con-
sumption [25, 26], and decreases in response to volume 
removal in dialysis [22] and blood donation [27]. How-
ever, none of these studies correlated corrected CFT with 
CO. CBF has been less extensively studied. However, in 
one study of 34 patients, a change in CBF in response to 
PLR was found to correlate significantly with a change in 
stroke volume index, measured by bioreactance [28].

Despite these promising studies, neither measure has 
been correlated directly with a commonly used invasive 
reference standard for measuring CO via the pulmonary 
artery catheter. As such, this study seeks to compare cor-
rected CFT and CBF with invasive measures of CO.

Methods
All adult patients at Massachusetts General Hospital car-
diac catheterization laboratory undergoing right heart 
catheterization between February and April 2016 were 
invited to participate. Non-consenting patients, patients 

on mechanical ventilation, and those unable to tolerate 
a passive leg raise (PLR) maneuver were excluded (e.g., 
unable to lie supine or had pain with PLR).

Carotid ultrasound images were obtained concurrently 
with CO measures with the patient in the supine position. 
A PLR was then performed by elevating the legs using a 
standardized 30° foam wedge (RayShield® AADCO Med-
ical Inc., Vermont). Repeat carotid ultrasound images 
and concurrent CO measurements were then obtained 
within 1 min after PLR, as maximal blood flow changes 
were felt to be observed within 1 min [8, 29].

Carotid ultrasound images were obtained by an emer-
gency ultrasound fellow (I.M.). Images were obtained 
using a linear-array (15–4 MHz) transducer on a bedside 
ultrasound system (uSmart® Terason 3200T, Burlington, 
MA). The carotid vascular preset was used (pulse repeti-
tion frequency 5.0 kHz, wall filter 75 Hz). The common 
carotid artery was scanned in transverse and longitudi-
nal planes. Spectral Doppler tracings were then obtained 
by placing a 0.5  mm sample gate through the center of 
vessel, within 2–3  cm proximal to the carotid bulb in 
the longitudinal plane, in accordance to standard guide-
lines [30]. The angle correction cursor was placed paral-
lel to the direction of blood flow. Images with insonation 
angles  >60° were excluded because of resultant inaccu-
racies of flow and velocity measurements at such angles 
[31].

Carotid measurements
Corrected CFT was calculated as systole time/√cycle 
time [27]. Systole time was measured from the start of 
systolic upstroke to the start of the dicrotic notch, while 
cycle time was the duration of the cycle (Fig. 1a).

CBF was calculated as

where VTI indicates velocity time integral [28]. VTI of 
the Doppler signal was measured using manual tracings 
(Fig. 1b). Intimal-to-intimal carotid diameter was meas-
ured at the level of the sample gate (Fig. 1b).

All carotid measurements (systole time, cycle time, 
VTI, diameter) were measured on a single waveform by 
one investigator (I.M.) in order to calculate corrected 
CFT and CBF. Average corrected CFT and average CBF 
were then calculated using a mean of three waveforms. 
To establish interrater reliability on obtaining measure-
ments, all measurements on obtained images were then 
repeated by a second independent investigator (C.W. or 
A.A., both with similar training to I.M.), who was blinded 
to all CO and carotid measurements. Results from the 
second investigator were used only to provide interrater 
reliability estimates.

blood flow = π × (carotid diameter)2/4

× VTI × heart rate,
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Image acceptability was rated independently by two 
trained raters (C.W., A.A.), using five domains (internal 
reliability acceptable, Cronbach’s alpha =  0.84): correc-
tion angle parallel to vessel, sample gate in the center of 
the vessel, sufficient gain, vessel was non-oblique, and 
measurements made within 2–3 cm proximal to carotid 
bulb (see Additional file  1). All domains were rated 

using a 5-point Likert scale, where 1 = poor quality and 
5 = excellent quality, with overall image quality rated as a 
summary measure, based on global expert opinion.

Cardiac output measurements were obtained by 
thermodilution method in the absence of severe tri-
cuspid regurgitation, by an injection of 10  mL of ster-
ile 0.9% saline injection into the proximal lumen of the 

Fig. 1  a Carotid systole time, as measured from the start of the systolic upstroke to the start of the dicrotic notch (left). Carotid cycle time, as 
measured from start of one systolic upstroke to the next (right). b Velocity time integral tracing of the spectral Doppler signal (left). Carotid diameter 
(right)
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pulmonary artery catheter and subsequent detection 
of the temperature change at the distal thermistor [32]. 
Fick oxygen method was used in the presence of severe 
tricuspid regurgitation [33]. The Fick method involved 
simultaneous arterial and mixed venous blood sample 
measurement, and cardiac output was determined based 
upon the ratio between estimated oxygen consumption 
and arteriovenous oxygen gradient [34]. Post hoc analy-
ses of correlation measures were performed in subgroups 
of patients in and not in atrial fibrillation at the time of 
the procedure.

This study was approved by the Partners Human 
Research Committee Institution Review Board.

Statistical analysis
On the basis of Marik et al.’s prior study on estimates of 
stroke volume indices correlations with carotid blood 
flow [28], we estimated that 26 patients would have 90% 
power to detect a correlation of 0.59 (α = 0.05). However, 
as interim analyses revealed a lower than 0.59 correla-
tion in our study sample. A repeat sample size calculation 
suggested that an estimated 48 patients would be needed 
to detect a correlation of 0.45 (α = 0.05, power = 0.9).

Pre- and post-PLR measurements were compared using 
paired t tests and Wilcoxon signed-rank tests, as appro-
priate. Correlations between CO and carotid parameters 
were made using Spearman’s rho, a non-parametric cor-
relation coefficient. Confidence intervals around Spear-
man’s rho were based on Fisher’s r to z transformation 
[35]. Correlation coefficients of 0.10–0.29 were con-
sidered weak, 0.30–0.49 as moderate, and 0.50–1.00 as 
strong [36]. All p values were adjusted for multiple com-
parisons using the Benjamini–Hochberg procedure [37], 
which allows the false discovery rate to be controlled at 
the 0.05 level.

All analyses were performed using SAS 9.4 (SAS Insti-
tute Inc. Cary, NC) and SPSS version 24 (IBM Corp. 
Armonk, NY).

Results
Of the 67 eligible patients, 51 patients (76%) were 
included in the final analysis (Fig. 2; Table 1). The major-
ity of patients had cardiac output measurements done 
using thermodilution (n =  44; 86%). Five patients were 
excluded because of angles of insonation of >60°. Of the 
included 51 patients, median angle of insonation was 
60°, with a range of 38–60°. Overall image quality of the 
included patients was rated as above-average quality 
[mean score 4.1  ±  standard deviation (SD) 0.6] based 
on global expert opinion. As there were no differences 
in CO, corrected CFT, or CBF between pre- and post-
PLR maneuver (Table  2), only baseline measures (i.e., 
pre-PLR) will be further discussed. Interrater reliability 

for corrected CFT and CBF measurements on obtained 
images was excellent [intraclass correlation coefficient 
(ICC) 0.90, 95% CI 0.82–0.94; ICC 0.96, 95% CI 0.58–
0.99, respectively].

Corrected carotid flow time (CFT)
Single waveform measurements of corrected CFT did 
not correlate with CO measurements [ρ = 0.25, 95% con-
fidence interval (CI) −0.03 to 0.49, adjusted p =  0.08]. 
Corrected CFT measurements using three waveforms 
correlated significantly, but weakly, with CO (ρ =  0.29, 
95% CI 0.02–0.53, adjusted p = 0.046).

Carotid blood flow (CBF)
Single waveform CBF correlated moderately and sig-
nificantly with CO [ρ = 0.44, 95% CI 0.18–0.63, adjusted 
p =  0.004). CBF measurements using three waveforms 
also moderately and significantly correlated with CO 
(ρ = 0.41, 95% CI 0.16–0.62, adjusted p = 0.004).

Subgroup analysis
In a subgroup of patients not in atrial fibrillation at the 
time of the procedure (n = 45), single waveform meas-
urements of corrected CFT did not correlate with CO 
(ρ = 0.26, 95% CI −0.04 to 0.51, adjusted p = 0.17). For 
patients in atrial fibrillation at the time of the procedure 

Pa�ents undergoing
right heart catheteriza�on during

study period
(n = 67)

Excluded (n = 6)

Reasons for exclusion:
Pain with leg raise (n = 1)
Unable to lie supine (n = 1)
Pa�ent declined (n = 4)

Enrolled

(n = 61)

Excluded (n=10)

Reasons for exclusion:
Inability to image (bandage) (n = 1)
Congenital caro�d anomaly (n = 1)
Insufficient quality, angle >600

(n = 5)
Missing images (n = 3)

Included in study

(n = 51)

Fig. 2  Flow chart of number of patients enrolled in the study and 
included in the analyses
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(n = 6), single waveform corrected CFT measurements 
did not correlate with CO (ρ =  0.09, 95% CI −0.78 to 
0.84, adjusted p = 0.88). In patients not in atrial fibrilla-
tion (n = 45), corrected CFT measurements using three 
waveforms correlated moderately and significantly with 
CO (ρ  =  0.33, 95% CI 0.04–0.56, adjusted p  =  0.03). 
In patients in atrial fibrillation (n =  6), corrected CFT 
measurements using three waveforms did not correlate 
with CO (ρ  =  −0.14, 95% CI −0.86 to 0.76, adjusted 
p = 0.92).

Single waveform measurements of CBF correlated 
moderately and significantly with CO in patients not in 
atrial fibrillation at the time of the procedure (ρ = 0.42, 
95% CI 0.15–0.64, adjusted p = 0.03). For the six patients 
in atrial fibrillation, single waveform measurements did 
not correlate with CO (ρ = 0.66, 95% CI −0.33 to 0.96, 
adjusted p =  0.28). In patients not in atrial fibrillation 
(n = 45), CBF measurements using three waveforms cor-
related moderately and significantly with CO (ρ =  0.40, 
95% CI 0.12–0.62, adjusted p = 0.02). For the six patients 
in atrial fibrillation at the time of the procedure, CBF 
measurements using three waveforms did not corre-
late with CO (ρ =  0.60, 95% CI −0.41 to 0.95, adjusted 
p = 0.31).

Self‑report feasibility
Overall, reported ease of carotid diameter measurement 
was high (mean score 4.1 ± SD 0.8, where 1 = very diffi-
cult and 5 = very easy). Reported ease of measuring VTI 
tracings was moderate (mean score 3.5 ±  SD 0.8). Ease 
of systole time was moderate (3.7 ± SD 0.8) and high for 
cycle time (4.2 ± SD 0.7).

Discussion
In this study of 51 adult patients undergoing invasive 
right heart catheterization and simultaneous carotid 
ultrasound, CBF correlated moderately and significantly 
with CO. This relationship was present whether a single 
waveform or an average of three waveforms was used. 
Corrected CFT, on the other hand, when measured 
using only a single waveform, as per the method used 
by prior studies [22, 25–27], demonstrated no correla-
tion with CO. Only by measuring three waveforms was 
corrected carotid flow time’s correlation with CO signifi-
cant. However, the strength of this relationship was weak. 
Altogether, our findings suggest CBF may be a better sur-
rogate marker for CO and that CBF measurements may 
be less subject to measurements issues than corrected 
CFT.

The ability to estimate CO in an accurate, reliable, and 
feasible manner is an important part of determining 
patients’ volume responsiveness. Carotid ultrasound is 

Table 1  Baseline characteristics of  51 patients included 
in the study

Baseline characteristics Number (%)

Mean age in years ± standard deviation 59.6 ± 16.3

Gender

 Male 39 (76)

 Female 12 (24)

Body mass index (kg/m2) ± standard deviation 26.3 ± 5.9

History of

 Diabetes mellitus 13 (25)

 Hypertension 26 (51)

 Dyslipidemia 22 (43)

 Coronary artery disease 17 (33)

 Prior angioplasty and/stent placement 7 (14)

 Prior coronary bypass surgery 4 (8)

 Stroke or transient ischemic attacks 11 (22)

 Atrial fibrillation 13 (25)

 Moderate or severe aortic insufficiency 1 (2)

 Moderate or severe aortic stenosis 5 (10)

Indication for right heart catheterization

 Diagnostic right heart catheterization only 24 (47)

 Cardiac biopsy 27 (53)

Cardiac output measurement method

 Thermodilution 44 (86)

 Fick oxygen method 7 (14)

Vascular access

 Internal jugular 40 (78)

 Forearm (cephalic or basilic) 5 (10)

 Femoral 6 (12)

Table 2  Baseline mean cardiac output and median carotid ultrasound parameters (corrected flow time and blood flow) 
pre- and post-passive leg raise

Parameter Pre-passive leg raise median 
(interquartile range)

Post-passive leg raise median 
(interquartile range)

p value

Mean cardiac output ± standard deviation (SD) (L/min) 5.15 ± 1.58 5.19 ± 1.58 0.69

Corrected flow time (single waveform in milliseconds) 331.7 (308.6–357.8) 344.2 (321.6–360.6) 0.06

Corrected flow time (average of three waveforms in milliseconds) 335.2 (311.0–359.3) 339.6 (322.1–368.9) 0.13

Blood flow (single waveform in mL/min) 576.3 (389.5–806.9) 551.77 (441.5–763.5) 0.45

Blood flow (average of three waveforms in mL/min) 555.4 (422.1–766.6) 558.3 (452.7–741.6) 0.45
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a promising tool for two reasons. First, unlike the tradi-
tional reference standard of CO measurement from a pul-
monary artery catheter [5, 9], carotid ultrasound imaging 
is non-invasive and readily available in many centers. Sec-
ond, as evidenced by reported ease of measurements in 
our study, and confirmed by prior studies [23, 24], carotid 
ultrasound is easy to perform. This is in contrast to echo-
cardiographic measures of CO [21], which requires more 
extensive training [38], as its accuracy is dependent on 
scan techniques and patient factors such as obesity and 
availability of sonographic windows [39].

In deciding whether to use corrected CFT or CBF as 
an estimate of CO, one should consider the following fac-
tors: (1) strength of the correlation with reference stand-
ard, (2) contextual factors that may limit its accuracy, (3) 
reliability, (4) feasibility, and (5) sensitivity in detecting 
CO changes. We argue that CBF is superior for the first 
two factors, and that both CBF and corrected CFT dem-
onstrated high interrater reliability and feasibility.

To our knowledge, ours is the first study to compare 
both carotid ultrasound measures with invasive meas-
ures of CO. Our study demonstrates that CBF correlates 
stronger than corrected CFT with CO and is less sensi-
tive to measurements errors. We hypothesize that two 
sources of errors may be contributing to measurement 
errors in corrected CFT: cardiac arrhythmia and underly-
ing cardiac conditions.

With respect to the cardiac arrhythmia hypothesis, 
we noted that corrected CFT measurements based on 
averaging three waveforms yielded a higher and signifi-
cant correlation, compared to measurements based only 
on one waveform. The potential of respiratory contribu-
tion to the variations in cycle time and systole time (sinus 
arrhythmia) may contribute to this finding. The hypoth-
esis regarding the contribution of arrhythmias to inac-
curate measurements was further supported by findings 
from our subgroup analysis, whereby the correlation of 
corrected CFT with CO became significant in a subgroup 
of patients not in atrial fibrillation at the time of the pro-
cedure, and only if an average of three waveforms were 
used. Correlations were lower in general for patients in 
atrial fibrillation compared with those not in atrial fibril-
lation, whether a single waveform or three waveforms 
were used. Indeed, prior studies evaluating corrected 
carotid flow time excluded patients with atrial fibrilla-
tion [22, 25–27]. In our subgroup analysis of patients in 
atrial fibrillation, we were unable to detect significant 
correlations with cardiac output measurement regard-
less of whether CBF or corrected CFT was used, and 
regardless of whether a single waveform or an average of 
three waveforms was used. However, our small sample 
size (n =  6) is likely too small to demonstrate a signifi-
cant correlation. Future studies should evaluate the use 

of these parameters in patients in atrial fibrillation. Until 
such studies are performed, it may be prudent to con-
tinue to exclude patients with significant cardiac arrhyth-
mia when attempting to use carotid measurements as 
surrogates for CO.

With respect to the cardiac condition hypothesis, it is 
noteworthy that measurements of systole time require 
the identification of the start of the dicrotic notch. Val-
vular diseases are known to affect carotid tracings, which 
may render the dicrotic notch more difficult to appreciate 
[40–42]. Indeed, in our study, self-report ease of measur-
ing cycle time was higher than for systole time, which may 
be a reflection of the difficulty in identifying the dicrotic 
notch in certain cases. Carotid blood flow, on the other 
hand, utilizes more clinical parameters (diameter, VTI, and 
heart rate) that may be less subject to the changes of any 
single parameter and may therefore more accurately esti-
mate for the volumetric flow of blood through the carotid. 
For example, adaptation to a lower VTI may be accom-
modated by a larger carotid diameter and/or a faster heart 
rate. Therefore, accounting for these additional parameters 
may result in an overall more accurate estimate.

There are a number of limitations in our study. First, 
this is a single-centered study. Second, we are able to 
report only interrater reliability for image interpreta-
tion and not for image acquisition (a single sonogra-
pher performed all the scanning). Image acquisition by 
untrained sonographers may potentially result in unac-
ceptable interrater reliability. Future studies should 
examine image acquisition interrater reliability and the 
role of training. Third, as our patients were largely euv-
olemic, PLR maneuvers resulted in no demonstrable 
changes in any of our measured parameters. Therefore, 
we cannot comment on the sensitivity of carotid meas-
urements to changes imposed by dynamic maneuvers. 
Further, our use of a 30° foam wedge rather than the 
more commonly used 45° leg lift [7] may have further 
limited our ability to induce significant changes pre- 
and post-PLR. In addition, although it has been argued 
that the maximal blood flow changes occur within one 
minute [8, 29], the majority of studies evaluating PLR 
use a longer time frame [7]. The optimal timing remains 
unclear. Fourth, our subgroup analysis of patients in and 
not in atrial fibrillation was performed in a post hoc 
manner. Results from these analyses should be consid-
ered as hypothesis generating only. Fifth, our carotid 
VTI measurements were performed manually. There-
fore, measurement errors may be present. However, 
measurement errors would be expected to dilute corre-
lation coefficients towards the null [43]. Because many 
machines are equipped with automatic VTI tracings, 
correlation coefficients for CBF measured in an auto-
mated manner may yield higher correlations than those 
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reported in our study. Sixth, we do not have information 
on the history of carotid disease. Therefore, we are una-
ble to determine the impact of carotid disease on the 
accuracy of our carotid ultrasound measurements. Last 
but not least, the majority of our patients underwent 
the thermodilution method for cardiac output estima-
tion. While its use is commonly accepted as the prac-
tical gold standard, its use is not without limitations, 
especially in the presence of significant tricuspid regur-
gitation, intracardiac shunts, or concurrent intravenous 
infusions [9, 44, 45].

Conclusions
Our study demonstrates that compared to corrected 
CFT, CBF demonstrated stronger and more consistent 
correlation with CO. Its use for assessing volume respon-
siveness should be further evaluated.
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